26 research outputs found

    Profiling of berries by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOF-MS)

    Get PDF
    poster C149, Proceedings Annual Biomedical Research Conference for Minority Students (ABRCMS 2011), November 9 - 12, 2011, America’s Center, St. Louis, MO, US

    OmicsVis: an interactive tool for visually analyzing metabolomics data

    Get PDF
    When analyzing metabolomics data, cancer care researchers are searching for differences between known healthy samples and unhealthy samples. By analyzing and understanding these differences, researchers hope to identify cancer biomarkers. Due to the size and complexity of the data produced, however, analysis can still be very slow and time consuming. This is further complicated by the fact that datasets obtained will exhibit incidental differences in intensity and retention time, not related to actual chemical differences in the samples being evaluated. Additionally, automated tools to correct these errors do not always produce reliable results. This work presents a new analytics system that enables interactive comparative visualization and analytics of metabolomics data obtained by two-dimensional gas chromatography-mass spectrometry (GC × GC-MS). The key features of this system are the ability to produce visualizations of multiple GC × GC-MS data sets, and to explore those data sets interactively, allowing a user to discover differences and features in real time. The system provides statistical support in the form of difference, standard deviation, and kernel density estimation calculations to aid users in identifying meaningful differences between samples. These are combined with novel transfer functions and multiform, linked visualizations in order to provide researchers with a powerful new tool for GC × GC-MS exploration and bio-marker discovery

    Volume equations and biomass estimates for three species in tropical moist forest in the Orientale province, Democratic Republic of Congo

    No full text
    Volume equations predict the volume of the stem of a tree from dendrometrical characteristics that are easy to measure, such as diameter and/or height. These equations can serve as a surrogate for biomass equations, by converting the stem volume to stem biomass, and then expanding it to the total aboveground biomass. This is especially important for Central Africa where biomass equations are scarce, whereas volume equations are common. We measured the stem volume of 459 trees in the Yoko forest, Orientale province, Democratic Republic of Congo. These trees belonged to three species: Gilbertiodendron dewevrei (limbali), Guarea thompsonii (bossé foncé) and Scorodophloeus zenkeri (divida). Species-specific volume equations were fitted using these data, and biomass estimates were derived from these volume equations. The fitted volume equations were consistent with other location-specific volume equations for the same species. The biomass estimates derived from the fitted volume equations were also found to be consistent with multispecies pantropical biomass equations. Keywords: aboveground woody biomass, allometric equation, bossé foncé, Central Africa, divida, limbaliSouthern Forests 2010, 72(3/4): 141–14

    All Silicon Micro-GC Column Temperature Programming Using Axial Heating

    No full text
    In this work we present a high performance micro gas chromatograph column with a novel two dimensional axial heating technique for faster and more precise temperature programming, resulting in an improved separation performance. Three different axial resistive heater designs were simulated theoretically on a 3.0 m × 300 μm × 50 μm column for the highest temperature gradient on a 22 by 22 μm column. The best design was then micro-fabricated and evaluated experimentally. The simulation results showed that simultaneous temperature gradients in time and distance along the column are possible by geometric optimization of the heater when using forced convection. The gradients along the column continuously refocused eluting bands, offsetting part of the chromatographic band spreading. The utility of this method was further investigated for a test mixture of three hydrocarbons (hexane, octane, and decane)

    Measurement of selected polybrominated diphenyl ethers, polybrominated and polychlorinated biphenyls, and organochlorine pesticides in human serum and milk using comprehensive two-dimensional gas chromatography isotope dilution time-of-flight mass spectrometry

    Full text link
    A new method using comprehensive two-dimensional gas chromatography and isotope dilution time-of-flight mass spectrometry (GC x GC-IDTOFMS) for the simultaneous measurement of selected polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and brominated flame retardants is presented. In contrast to the reference methods based on classical GC/MS, a single injection of the extract containing all compounds of interest results in accurate identification and quantification. Using GC x GC ensures the chromatographic separation of most compounds, and TOFMS allows mass spectral deconvolution of coeluting compounds as well as the use of C-13-labeled internal standards for quantification. Isotope ratio measurements of the most intense ions for both native and labels ensure the required specificity. The use of this new method with an automated sample preparation procedure developed at the Centers for Disease Control and Prevention (CDC) for the analysis of human serum and milk compared favorably to conventional isotope-dilution one-dimensional gas chromatography-high-resolution mass spectrometty (GC-IDHRMS) for the different human serum and milk pools tested. The instrumental detection limits ranged between 0.5 pg/muL and 10 pg/muL and the method detection limits ranged between I and 15 pg/muL (N = 59 analytes). The reproducibility of the method was almost as good as with GC-IDHRMS, the relative standard deviations ranging between 1 and 11% for OCPs measured in human serum. OCP, PBDE, and PCB levels measured using the two methods were highly correlated, and the deviations between the two methods were below 20% for most analytes with concentrations above 1 ng/g milk lipids
    corecore